Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
ACS Nano ; 18(19): 12311-12324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691642

RESUMEN

High-safety and high-energy-density solid-state lithium metal batteries (SSLMBs) attract tremendous interest in both academia and industry. Especially, composite polymer electrolytes (CPEs) can overcome the limitations of single-component solid-state electrolytes. In this work, a strategy of combining a rigid functional skeleton with a soft polymer electrolyte to prepare reinforced CPEs was adopted. The in situ grown zeolitic imidazolate frameworks (ZIFs) with three-dimensional cellulose fiber skeleton (ZIF-67@CF) and succinonitrile (SN) plasticizer into poly(ethylene oxide) (PEO) together form ZIF-67@CF/PEO-SN CPEs. The addition of ZIF-67@CF and SN to PEO synergistically enhanced the physical and electrochemical properties of CPEs. Furthermore, the conduction mechanism of lithium-ion (Li+) in CPEs was studied using density functional theory. It is impressive that the ZIF-67@CF/PEO-SN CPEs at 30 °C exhibit a high ionic conductivity of 1.17 × 10-4 S cm-1, a competitive Li+ transference number of 0.40, a wide electrochemical window of 5.0 V, a notable tensile strength of 18.7 MPa, and superior lithium plating/stripping stability (>550 h at 0.1 mA cm2). Such favorable features endowed LiFePO4/(ZIF-67@CF/PEO-SN)/Li cell at 30 °C with a high discharging capacity (152.5 mA h g-1 at 0.2 C), a long cycling lifespan (>150 cycles with 99% capacity retention), and superior operating safety. This work provides insights and promotes the application of functionalized CPEs for SSLMBs.

2.
Adv Mater ; : e2401678, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678380

RESUMEN

Tactile sensing requires integrated detection platforms with distributed and highly sensitive haptic sensing capabilities along with biocompatibility, aiming to replicate the physiological functions of the human skin and empower industrial robotic and prosthetic wearers to detect tactile information. In this regard, short peptide-based self-assembled hydrogels show promising potential to act as bioinspired supramolecular substrates for developing tactile sensors showing biocompatibility and biodegradability. However, the intrinsic difficulty to modulate the mechanical properties severely restricts their extensive employment. Herein, by controlling the self-assembly of 9-fluorenylmethoxycarbonyl-modifid diphenylalanine (Fmoc-FF) through introduction of polyethylene glycol diacrylate (PEGDA), wider nanoribbons are achieved by untwisting from well-established thinner nanofibers, and the mechanical properties of the supramolecular hydrogels can be enhanced 10-fold, supplying bioinspired supramolecular encapsulating substrate for tactile sensing. Furthermore, by doping with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and 9-fluorenylmethoxycarbonyl-modifid 3,4-dihydroxy-l-phenylalanine (Fmoc-DOPA), the Fmoc-FF self-assembled hydrogels can be engineered to be conductive and adhesive, providing bioinspired sensing units and adhesive layer for tactile sensing applications. Therefore, the integration of these modules results in peptide hydrogelation-based tactile sensors, showing high sensitivity and sustainable responses with intrinsic biocompatibility and biodegradability. The findings establish the feasibility of developing programmable peptide self-assembly with adjustable features for tactile sensing applications.

3.
Chemosphere ; 354: 141497, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452981

RESUMEN

During the anammox process, mitigation of biomass washout to increase sludge retention is an important parameter of process efficiency. Signal molecular stimulants (SMS) initiate the sludge granulations controlled by programmed cell death (PCD) of microorganisms. In this study, the aerobic granular sludge (AGS), cell fragments, extracellular polymeric substances (EPS), and AGS process effluent were tested as SMS to identify their effect on anammox granulation. The results showed that the addition of SMS increased the nitrogen removal efficiency to varying degrees, whereas the addition of AGS process supernatant, as SMS, increased the ammonia removal efficiency up to 96%. The addition of SMS was also found to increase EPS production and contributed to sludge granulation. In this process, the proportion of PCD increased and both Gaiella and Denitratisoma abundance increased from 3.54% to 5.59%, and from 1.8% to 3.42%, respectively. In conclusion, PCD was found important to increase anaerobic ammonia oxidation performance through the granulation mechanism.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Aguas del Alcantarillado , Reactores Biológicos , Amoníaco , Nitrógeno/metabolismo , Apoptosis , Oxidación-Reducción
5.
ACS Omega ; 8(48): 45457-45473, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38075746

RESUMEN

Most thin interbed reservoirs face a common problem that a nonequilibrium injection and production relationship in plane and vertical directions results in quick water breakthrough, rapid water-cut rise, and a poor water flooding efficiency in a single layer. A finer injection-production strategy should be developed to avoid serious water channeling and an ineffective water cycle. To narrow this gap, this work presents a three-dimensional intelligent equilibrium displacement model (3D-IEDM) to optimize water flooding in thin interbed reservoirs. A water-injection splitting model is first established to determine the water-injection rate of each layer based on displacement pressure and flow resistance. Then, water saturation is calculated for the injection-production well group based on the material balance principle. To achieve three-dimensional equilibrium flooding, the minimum water saturation variance is chosen as the optimization target and the improved particle swarm optimization algorithm is employed to reduce the optimization time caused by iterative calculations. Finally, the 3D-IEDM is programmed as software to provide a quantitative equilibrium flooding optimization scheme in an actual oilfield. The implementation in the pilot B36 well group test of the PL oilfield indicates that the optimization velocity of the 3D-IEDM can optimize the vertical water injection profile of thin interbed reservoirs and improve the sweep efficiency, and the length of time is approximately 14 times less than that of conventional simulator-based methods. Compared with the conventional injection-production scheme, the initial productivity of the pilot well group using the 3D-IEDM increases by 6.45%, and the utilization factor of water injection improves by 15%.

6.
ACS Omega ; 8(42): 39855-39864, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901529

RESUMEN

The previous research results showed that the extracts of ethyl acetate of the rhizome of Ligusticum chuanxiong (Rhizoma chuanxiong) possessed significant antigout effects in model mice. To explore the active ingredients responsible for the effects, phytochemical studies were performed, which led to the isolation of three rare 8', 9-linked neolignans, ligusticumins A-C (1-3), together with two novel phthalide-phenylpropanoid heterodimers, ligusticumalides A-B (4 and 5). It is noteworthy that 4 possesses an unprecedented 7-styryl phthalide skeleton. The structures and absolute configurations of 1-5 were elucidated by one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy and electron-capture detector (ECD) spectroscopic methods. The bioassay results showed that compounds 1, 2, 3, and 5 presented moderate inhibitory activities against xanthine oxidase (XO) and 4 possessed a significant XO inhibitory effect with an IC50 value of 93.88 µM. This is the first time to investigate the anti-XO active ingredients of R. chuanxiong, which provides valuable information for searching for new antigout agents from natural products.

7.
Polymers (Basel) ; 15(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37896363

RESUMEN

Simultaneously high-rate and high-safety lithium-ion batteries (LIBs) have long been the research focus in both academia and industry. In this study, a multifunctional composite membrane fabricated by incorporating poly(vinylidene fluoride) (PVDF) with magnesium carbonate hydroxide (MCH) nanofibers was reported for the first time. Compared to commercial polypropylene (PP) membranes and neat PVDF membranes, the composite membrane exhibits various excellent properties, including higher porosity (85.9%) and electrolyte wettability (539.8%), better ionic conductivity (1.4 mS·cm-1), and lower interfacial resistance (93.3 Ω). It can remain dimensionally stable up to 180 °C, preventing LIBs from fast internal short-circuiting at the beginning of a thermal runaway situation. When a coin cell assembled with this composite membrane was tested at a high temperature (100 °C), it showed superior charge-discharge performance across 100 cycles. Furthermore, this composite membrane demonstrated greatly improved flame retardancy compared with PP and PVDF membranes. We anticipate that this multifunctional membrane will be a promising separator candidate for next-generation LIBs and other energy storage devices, in order to meet rate and safety requirements.

8.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687073

RESUMEN

Vinyl acetate is a restricted substance in food products. The quantification of the organic impurities in vinyl acetate is a major problem due to its activity, instability, and volatility. In this paper, while using the mass balance method to determine the purity of vinyl acetate, an improved method was established for the determination of the content of three impurities in vinyl acetate reference material, and the GC-FID peak area normalization for vinyl acetate was calibrated. The three trace organic impurities were identified by gas chromatography tandem high-resolution mass spectrometry to be methyl acetate, ethyl acetate, and vinyl propionate. The content and relative correction factors for the three organic impurities were measured. The purity of vinyl acetate determined by the mass balance method was 99.90% with an expanded uncertainty of 0.30%, and the total content of organic impurities was 0.08% with a relative correction factor of 1.23%. The vinyl acetate reference material has been approved as a national certified reference material in China as GBW (E) 062710.

9.
Front Neurol ; 14: 1184864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602239

RESUMEN

Background: Acute necrotizing encephalopathy (ANE) is a devastating neurologic condition that can arise following a variety of systemic infections, including influenza and SARS-Cov-2. The clinical features of COVID-19-associated ANE in pediatric patients based on multi-case data have not yet been described and remain obscure. We reviewed 12 pediatric patients to better describe the clinical features of ANE with COVID-19. Methods: We retrospectively collected and summarized the clinical features of ANE in children with COVID-19. Clinical data were collected from 12 children, including their general status, clinical symptoms, laboratory tests, and neuroimaging features. Results: Among the subjects, 10 were over 5 years old and they accounted for 83.33%. A large percentage of those affected (66.67%) were females. The major manifestations included fever (100%), impaired consciousness (100%), and convulsions (75%). We determined that increased interleukin (IL)-6 and IL-10, and tumor necrosis factor-α and interferon gamma were not predictive of severe ANE and mortality in children with COVID-19 in this study. All children presented with abnormal neuroimaging with multiple and symmetrically distributed lesions, involving the thalamus, basal ganglia, cerebellum, and brain hemispheres. Eight of the 12 children died, resulting in a mortality rate of 66.67%, and 75% of these children were females. Importantly, we found the timely administration of mannitol after an acute onset of convulsions or disturbance of consciousness may be decreased the high mortality induced by ANE children with COVID-19. Conclusion: COVID-19 associated with ANE in children is characterized by sudden symptom onset, rapid disease progression, and high mortality.

10.
Phytomedicine ; 119: 155021, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37603974

RESUMEN

BACKGROUND: Total saponins from Rhizoma Panacis Majoris (RPMTG) showed significant antitumour activity in our previous studies. Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) with tumour-like characteristics have received attention as a therapeutic target for RA. However, the potential effect and mechanism of action of RPMTG against RA-FLS remain unclear. OBJECTIVE: The study investigated the therapeutic effect of RPMTG on adjuvant-induced arthritis (AIA) in rats, and the regulation effect and underlying mechanism on apoptosis, autophagy of RA-FLS. METHODS: The therapeutic effect of RPMTG was determined by the symptoms and signs of AIA rats. The production of inflammatory cytokines was detected by ELISA. Histopathological change of the ankle and synovial tissues were detected by HE staining. Flow cytometry, Hoechst 33342/PI staining, MDC staining, and TEM were used to determine the effects of RPMTG on apoptosis and autophagy. Western blotting was applied to detect the expression levels of proteins. RESULTS: In AIA rats, RPMTG treatment ameliorated paw swelling, and arthritis score, restored synovial histopathological changes, inhibited the expression of IL-6 and IL-1ß, exhibiting its potent anti-arthritis effect. In vitro, RPMTG depressed the proliferation of RA-FLS, arrested cell cycle in G0/G1 phase, and induced mitochondria-mediated apoptosis. Moreover, RPMTG significantly inhibited the autophagy in vivo and in vitro, proved by decreasing the expression of autophagy-related indicators (LC3II/LC3I, Beclin-1). Mechanistically, the study demonstrated that the activation of p38 MAPK and PI3K/Akt/mTOR pathways was mainly involved in the therapeutic effects of RPMTG. Interestingly, the effect of RPMTG on apoptosis was reversed after Rapamycin treatment, which preliminarily demonstrated that the inhibitory effect of RPMTG on autophagy was beneficial to the effect on inducing apoptosis. The regulation effect of RPMTG concurrently on apoptosis and autophagy revealed its unique advantages in RA treatment. CONCLUSION: RPMTG showed potent therapeutic effects on AIA rats and induced apoptosis, inhibited autophagy mainly through activating the p38 MAPK and PI3K/Akt/mTOR pathways in RA-FLS.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Sinoviocitos , Animales , Ratas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico
11.
Environ Sci Pollut Res Int ; 30(38): 89123-89139, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37452250

RESUMEN

Near-surface ozone (O3) pollution has become one of the main factors hampering urban air quality in northern China. However, on a spatiotemporal scale, dynamic transport paths and potential source areas of O3 in northern China are ambiguous. In addition, we suspect that the contribution of transportation activities to urban O3 concentrations developed in northern China may be underestimated. In this study, the HYSPLIT, PSCF, CWT and GTWR model were used to study the transmission paths, potential source areas and driving factors of urban O3 concentration on a spatiotemporal scale. The average annual concentration of surface O3 (the 90th percentile of MDA8) was 172 ± 29 µg/m3 in northern China from 2015 to 2020. In terms of inter-annual variation, the urban O3 concentration increased from 2015 to 2018, and decreased after 2018. On the spatial scale, the areas with high O3 concentration were mainly clustered in industrial cities (Tangshan, Baoding, Shijiazhuang, Xingtai and Handan). During the study period, the area with high O3 concentration in northern China shifted from northwest to southeast. From 2015 to 2020, the influence of long-distance air mass trajectories from Xinjiang and Siberi on airflow transport in Beijing city dominates (78.60%) The average percentage of short-distance transport trajectories from Shandong Peninsula region is about 21.40%. The core potential source areas of O3 pollution shifted from northwest to southeast, but the contribution to O3 pollution in Beijing gradually weakened during the same period. Temperature and relative humidity were the main meteorological driving factors affecting O3 concentration in the study area, while population density, the proportion of secondary industry in GDP, industrial smoke (dust) emissions, and passenger traffic were the main non-meteorological factors. During the period study, the influence of industrial and traffic emissions had a more significant impact on O3 concentration in northern China, which will require that more attention be paid to emission mitigation in the regional industrial and passenger transportation sector, as well as the joint prevention and control of O3 pollution in northern China in the future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , China
12.
Biophys Chem ; 297: 107013, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030215

RESUMEN

The constant mutation of SARS-CoV-2 has triggered a new round of public health crises and has had a huge impact on existing vaccines and diagnostic tools. It is essential to develop a new flexible method to distinguish mutations to prevent the spread of the virus. In this work, we used the combination of density functional theory (DFT) and non-equilibrium Green's function formulation with decoherence, to theoretically study the effect of viral mutation on charge transport properties of viral nucleic acid molecules. We found that all mutation of SARS-CoV-2 on spike protein was accompanied by the change of gene sequence conductance, this is attributed to the change of nucleic acid molecular energy level caused by mutation. Among them, the mutations L18F, P26S, and T1027I caused the largest conductance change after mutation. This provides a theoretical possibility for detecting virus mutation based on the change of molecular conductance of virus nucleic acid.


Asunto(s)
COVID-19 , Ácidos Nucleicos , Humanos , ARN , SARS-CoV-2/genética , Mutación , ADN
13.
Front Neurosci ; 17: 1122803, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36998723

RESUMEN

Introduction: Fear and sleep impairments common co-exist, but the underlying mechanisms remain unclear. Hypothalamic orexinergic neurons are involved in the regulation of sleep-wake and fear expression. The ventrolateral preoptic area (VLPO) is an essential brain region to promote sleep, and orexinergic axonal fibers projecting to the VLPO are involved in the maintenance of sleep-wake. Neural pathways from hypothalamic orexin neurons to the VLPO might mediate sleep impairments induced by conditioned fear. Methods: To verify above hypothesis, electroencephalogram (EEG) and electromyogram (EMG) were recorded for analysis of sleep-wake states before and 24 h after conditioned fear training. The retrograde tracing technique and immunofluorescence staining was used to identify the projections from the hypothalamic orexin neurons to the VLPO and to observe their activation in mice with conditioned fear. Moreover, optogenetic activation or inhibition of hypothalamic orexin-VLPO pathways was performed to observe whether the sleep-wake can be regulated in mice with conditioned fear. Finally, orexin-A and orexin receptor antagonist was administered into the VLPO to certify the function of hypothalamic orexin-VLPO pathways on mediating sleep impairments induced by conditioned fear. Results: It was found that there was a significant decrease in the non-rapid eye movement (NREM) and rapid eye movement (REM) sleep time and a significant increase in the wakefulness time in mice with conditioned fear. The results of retrograde tracing technique and immunofluorescence staining showed that hypothalamic orexin neurons projected to the VLPO and observed the CTB labeled orexin neurons were significantly activated (c-Fos+) in the hypothalamus in mice with conditioned fear. Optogenetic activation of hypothalamic orexin to the VLPO neural pathways significantly decreased NREM and REM sleep time and increased wakefulness time in mice with conditioned fear. A significant decrease in NREM and REM sleep time and an increase in wakefulness time were observed after the injection of orexin-A into the VLPO, and the effects of orexin-A in the VLPO were blocked by a pre-administrated dual orexin antagonist (DORA). Conclusion: These findings suggest that the neural pathways from hypothalamic orexinergic neurons to the VLPO mediate sleep impairments induced by conditioned fear.

14.
Artículo en Inglés | MEDLINE | ID: mdl-36900822

RESUMEN

Urban ozone (O3) pollution in the atmosphere has become increasingly prominent on a national scale in mainland China, although the atmospheric particulate matter pollution has been significantly reduced in recent years. The clustering and dynamic variation characteristics of the O3 concentrations in cities across the country, however, have not been accurately explored at relevant spatiotemporal scales. In this study, a standard deviational ellipse analysis and multiscale geographically weighted regression models were applied to explore the migration process and influencing factors of O3 pollution based on measured data from urban monitoring sites in mainland China. The results suggested that the urban O3 concentration in mainland China reached its peak in 2018, and the annual O3 concentration reached 157 ± 27 µg/m3 from 2015 to 2020. On the scale of the whole Chinese mainland, the distribution of O3 exhibited spatial dependence and aggregation. On the regional scale, the areas of high O3 concentrations were mainly concentrated in Beijing-Tianjin-Hebei, Shandong, Jiangsu, Henan, and other regions. In addition, the standard deviation ellipse of the urban O3 concentration covered the entire eastern part of mainland China. Overall, the geographic center of ozone pollution has a tendency to move to the south with the time variation. The interaction between sunshine hours and other factors (precipitation, NO2, DEM, SO2, PM2.5) significantly affected the variation of urban O3 concentration. In Southwest China, Northwest China, and Central China, the suppression effect of vegetation on local O3 was more obvious than that in other regions. Therefore, this study clarified for the first time the migration path of the gravity center of the urban O3 pollution and identified the key areas for the prevention and control of O3 pollution in mainland China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , China , Material Particulado/análisis , Ciudades
15.
Chem Asian J ; 18(9): e202300136, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36959090

RESUMEN

Herein, using 1,4-dibromonaphthalene (1,4-DBN) as the precursor molecule and Ag(111) surface as the substrate, we have characterized the various coordination and covalent structures formed by 1,4-DBN by low-temperature scanning tunnelling microscopy. We observed that there are three ordered structures (phase I, II, III) and one metal-organic short-chain structure (phase IV) at high coverage, meanwhile a new type of chiral structure (phase V) is observed coexisting with phase II, III, IV at low coverage. Surprisingly, all these structures have surface Ag adatoms incorporated. In addition, the phase III should be formed by a dissymmetric dehalogenation reaction of 1,4-DBN. Furthermore, we showed that the Ullmann coupling and cyclodehydrogenation of 1,4-DBN to form the armchair-shaped graphene nanoribbons will occur after thermal annealing. Combining the experiment data and density functional theory simulations, our results show that the surface Ag adatoms play a critical role in both the self-assembly and the on-surface reaction.

16.
J Environ Manage ; 330: 117105, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610191

RESUMEN

Near-ground ozone in the Yangtze River Delta (YRD) region has become one of the main air pollutants that threaten the health of residents. However, to date, the transport behavior and source areas of ozone in the YRD region have not been systematically analyzed. In this study, by combining the ozone observational record with a HYSPLIT (hybrid single-particle Lagrangian integrated trajectory) model, we tried to reveal the spatiotemporal regularity of the airflow transport trajectory of ozone. Spatially, high ozone concentrations mainly clustered in industrial cities and resource-based cities. Temporally, the center of the ozone pollution shifted westward of Nanjing from 2015 to 2021. With the passage of time, the influence of meteorological elements on the ozone concentration in the YRD region gradually weakened. Marine atmosphere had the most significant impact on the transmission path of ozone in Shanghai, of which the trajectory frequency in 2021 accounted for 64.21% of the total frequency. The transmission trajectory of ozone in summer was different from that in other seasons, and its transmission trajectory was mainly composed of four medium-distance transmission paths: North China-Bohai Sea, East China Sea-West Pacific Ocean, Philippine Sea, and South China Sea-South China. The contribution source areas mainly shifted to the southeast, and the emission of pollutants from the Shandong Peninsula, the Korean Peninsula-Japan, and the Philippine Sea-Taiwan area increased the impact of ozone pollution in the Shanghai area from 2019 to 2021. This study identified the regional transport path of ozone in the YRD region and provided a scientific reference for the joint prevention and control of ozone pollution in this area.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , China , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Estaciones del Año , Material Particulado/análisis
17.
Microb Ecol ; 85(3): 904-915, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35650293

RESUMEN

Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.


Asunto(s)
Lagos , Metagenómica , Lagos/microbiología , Agua , Ríos , Nitrógeno , Sulfatos
18.
Front Neurosci ; 16: 1056706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532270

RESUMEN

Introduction: Sleep disorders are common comorbidities in patients with temporal lobe epilepsy (TLE), but the underlying mechanisms remain poorly understood. Since the lateral hypothalamic (LH) and the perifornical orexinergic (ORX) and melanin-concentrating hormone (MCH) neurons are known to play opposing roles in the regulation of sleep and arousal, dysregulation of ORX and MCH neurons might contribute to the disturbance of sleep-wakefulness following epileptic seizures. Methods: To test this hypothesis, rats were treated with lithium chloride and pilocarpine to induce status epilepticus (SE). Electroencephalogram (EEG) and electromyograph (EMG) were recorded for analysis of sleep-wake states before and 24 h after SE. Double-labeling immunohistochemistry of c-Fos and ORX or MCH was performed on brain sections from the epileptic and control rats. In addition, anterograde and retrograde tracers in combination with c-Fos immunohistochemistry were used to analyze the possible activation of the amygdala to ORX neural pathways following seizures. Results: It was found that epileptic rats displayed prolonged wake phase and decreased non-rapid eye movement (NREM) and rapid eye movement (REM) phase compared to the control rats. Prominent neuronal activation was observed in the amygdala and the hypothalamus following seizures. Interestingly, in the LH and the perifornical nucleus, ORX but not MCH neurons were significantly activated (c-Fos+). Neural tracing showed that seizure-activated (c-Fos+) ORX neurons were closely contacted by axon terminals originating from neurons in the medial amygdala. Discussion: These findings suggest that the spread of epileptic activity from amygdala to the hypothalamus causes selective activation of the wake-promoting ORX neurons but not sleep-promoting MCH neurons, which might contribute to the disturbance of sleep-wakefulness in TLE.

19.
Molecules ; 27(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36364109

RESUMEN

The purpose of the present study aims to develop a satisfactory model for predicting pro-social and pro-cognitive effects on azinesulfonamides of cyclic amine derivatives as potential antipsychotics. The three dimensional-quantitative structure affinity relationship (3D-QSAR) study was performed on a series of azinesulfonamides of cyclic amine derivative using comparative molecular similarity indices analysis (CoMSIA). The best statistical model of CoMSIA q2, r2, SEE and F values are 0.664, 0.973, 0.087, and 82.344, respectively. Based on the model contour maps and the highest activity structure of the 43rd compound, serial new structures were designed and the 43k1 compound was selected as the best structure. The dock results showed a good binding of 43k1 with the protein (PDB ID: 6A93). The QSAR model analysis of the contour maps can help us to provide guidelines for finding novel potential antipsychotics.


Asunto(s)
Antipsicóticos , Trastorno Autístico , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , Plomo , Antipsicóticos/farmacología , Aminas
20.
Small ; 18(47): e2204271, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228104

RESUMEN

The surface properties of organic-inorganic hybrid perovskites can strongly affect the efficiency and stability of corresponding devices. Even though different surface passivation methods are developed, the microscopic structures of solution-processed perovskite film surfaces are not systematically studied. This study uses low-temperature scanning tunneling microscopy to study the organic-inorganic hybrid perovskite thin films, MA0.4 FA0.6 PbI3 and MAPbI3 , synthesized by the spin-coating method. Flat surface structures, atomic steps, and crystal grain boundaries are resolved at an atomic resolution. The surface imperfections are also characterized, as well as the dominant defects. Simulations on different types of iodine vacancy configurations are performed by density functional theory calculations. In addition, it is observed that the surface iodine lattice structure is unstable during scanning. Tip scanning can also cause the vertical migration of surface iodine ions. The measurements provide the direct visualizations of the surface imperfections of the solution-processed perovskite films. They are essential for understanding the surface-related optoelectronic effects and rationally designing more efficient surface passivation methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...